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ABSTRACT 

Finite simple groups of order divisible by three primes only and the odd 
Sylow subgroups of which are cyclic are classified. 

1. Introduction. The purpose of this paper is to classify certain finite groups 
in which all Sylow subgroups of odd order are cyclic. Although this assumption 
on Sylow subgroups simplifies the structure of the groups considerably, the 
problem of their classification is far from being solved. The partial results which 
are known were obtained under additional assumptions concerning either the 
structure of a Sylow 2-subgroup P of the group G, or the number of prime 
divisors of the order of G. To the first type belong results by Zassenhaus [9] 
for a cyclic P, those of Suzuki [7] dealing with dihedral and generalized quaternion 
P and the recent paper by Gagen [5] dealing with an Abelian P. To the second 
type belongs the p~q~-theorem of Burnside, according to which any group whose 
order is divisible by at most two distinct primes is solvable. 

The main result of this paper is the following 

THEOREM 1. Let G be a non-cyclic simple finite group and suppose that 
all Sylow subgroups of G of odd order are cyclic. Assume also that: 

o(G) = p°u ~w ~ 

where p, u and w are primes. Then G is isomorphic to one of the following groups: 
PSL(2, 5), PSL(2, 7), PSL(2, 8) and PSL(2,17). 

Theorem 1 follows from the following more general result: 

THEOREM 2. Let G be a non-cyclic finite simple group, and suppose that 

o(G) = p°r~s 
where p and r are distinct primes and 

s < p* - 1, (pr, s) = 1. 

Assume also that the Sylow p-subgroup P of G is cyclic and that if a ~_ 2 then 
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G has at least two conjugate classes of elements of order p. Then one of the 
following statements holds. 

(I) a = 1, r = 2  and G is isomorphic either to PSL(2,p) with p = 2m + 1, 
p > 3 or to PSL(2,2 m) with p = 2 m + 1 > 3. 

(II) a = 2, p = 3, r = 2 and G ~- PSL(2,8). 
Conversely, these groups satisfy the assumptions of the theorem. 

As an immediate corollary from Theorem 2 we get the following 

COROLLARY. Suppose that the group G satisfies the assumptions of Theorem 2, 
with the exception of the assumption about conjugate classes of elements of 
order p. Suppose, however, that one of the following conditions holds: 

(a) either p = 3 or INn(P): Ca(P)'] ~ p - 1; 
(b) p -  1 does not divide s; 
(c) s is an odd integer; 
(d) G contains a cyclic subgroup of order s; 
(e) r does not divide p - 2. 

Then the conclusion of Theorem 2 holds. 

The above mentioned results generalize those of [2]. Their proof depends 
heavily upon properties of characters of groups with a cyclic Sylow subgroup, 
which are obtained in Section 2. These properties are of independent interest 
and they are also needed in a forthcoming paper. 

In order to deduce Theorem 1 from Theorem 2, the following well-known 
result is used, for which no reference could be found. 

THEOREM 3. Let G ~- PSL(2, q), where q =pm > 3 and p is a prime. Assume 
that o(G) is divisible by three primes only. Then G is isomorphic to one of the 
following groups: 

(A) p = 2, PSL(2,4) and PSL(2,8); 
(B) p > 2, PSL(2,5), PSL(2,7), PSL(2,9) and PSL(2, 17). 

We use the standard notation Co(T), NG(T), o(T) and T ~', where T is a subset 
of the group G, to denote respectively: the centralizer, normalizer, number of 
elements and the non-unit elements of T. The commutator subgroup of G will be 
denoted by G', and if tr~ G then (tr)  is the group generated by a. An element a 
of G is called a p-element or p'-element, where p is a prime number, according 
to whether p divides the order of a or not. If  A and B are subgroups of G and A 
is a normal subgroup of B, then B/A is called a section of G. If  A/B and C/D are 
sections of G, and if each coset of B in A has a non-empty intersection with precisely 
one coset of D in C and each coset of D in C has a non-empty intersection with 
precisely one coset of B in A, then A/B and C/D are called incident sections. 
We will say that N~(A)/C~(A) actsfrobeniusly on the subgroup A of G if ~ =~  
for ~t e A # and ~/~ N~(A) implies that ~/~ C~(A). Finally, if  a and b are integers, 
then (a, b) denotes their greatest common divisor. 
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2. Groups with a cyclic Sylow p-subgroup. In his recent work [3], E. C. 
Dude extended the results of R. Brauer [1] about blocks of defect 1 to blocks with 
cyclic defect groups, exploiting a new technique of J. Thompson [8]. Our aim in 
this section is to show that in the specific case of groups G mentioned in the title, 
the theory of blocks with cyclic defect groups renders a very detailed information 
about characters belonging to the principal p-block, provided that the commutator 
subgroup G' is large enough. These results generalize Brauer's theory of characters 
of groups which are divisible by the prime p to the first power only. 

Before stating the main proposition, two well-known lemmas will be stated 
and proved. These lemmas express important properties of groups with a cyclic 
Sylow p-subgroup, for most of which no reference could be found. 

LEMMA 2.1. Let G be a fir~ite group with a cyclic Sylow p-subgroup P = <tr>. 
of order pL Let Po be a non-trivial subgroup of P. Then: 

(a) [Na(Po): CG(Po)] divides p - 1 ; 
(b) CG(Po) C~ NG(P) = Ca(P); 
(c) [NG(Po): Ca(Po)] = [NG(P): Ca(P)] and the sections Na(Po)/Ca(Po) and 

NG(P)/CG(P ) of G are incident; 
(d) NG(Po)/CG(Po) acts frobeniusly on Po. 

LEMMA 2.2. Let G be a finite group with a cyclic Sylow p-subgroup P of 
order pa. Then the pa _ 1 non-trivial ordinary irreducible characters of P are 
divided under conjugation by elements of NG(P ) into (pa_ 1)]q transitivity 
classes of q characters each, where q = [NG(P): CG(P)]. 

Proof of the Lemmas. Lemma 2.2 follows immediately from (d) and the 
properties of Frobenius groups. 

Since [Na(Po): Ca(Po)] is not divisible by p, the N/C theorem implies (a). 
To prove (b), let z e CG(Po) n Na(P) = D. As Ca(P) c D, it suffices to show that 

z e Ca(P). Since z acts trivially on Po, it also acts trivially on f~t(P)= <a p*-t> 
and it follows by [6, Theorem 5.2.4] that z = p~/, where p is a p-element of D and 
r/is a p'-element of D which belongs to Ca(P). As p is a p-element of NG(P), 
p belongs to P and consequently • = P~I E Ca(P), as required. 

In order to prove (c), it suffices to show that 

( i)  Na(eo)  = Na(P)  " Ca(Po). 

Indeed, if (1) holds, then by (b) 

[NG(Po): CG(Po)] = [NG(P): CG(P)]. 

If {a~[i= 1, ...,q} are coset representatives of Ca(P) in No(P), then by (b) 
aitr ~ 1 ~ CG(Po) would imply aiaj'l ~ Ca(P), a contradiction. Hence { ,li = 1,..., q} 
are also coset representatives of CG(Po) in Na(Po). It is clear that a coset of Co(Po) 
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in No(Pc) has a non-empty intersection with a unique coset of Co(P) in No(P) 
and vice versa. 

Now let z e No(Pc); in order to prove (1) it suffices to show that z ~ No(P)Ca(Po), 
as Pc is a characteristic subgroup of P. Let Pc = Gt>; then there exists ~/~ No(P) 
such that/~" = #~. But then zt/- ' e Co(p) = Co(Pc), z e Co(Pc)No(P), as required 
in order to prove (c). 

Finally, suppose that p ~ P ~ ,  t/~No(Po) and p " - - p .  Then by (c) ~/= '/17, 
where '7, ~ No(P) and 7 e Co(Pc). Obviously also p~' = p and consequently, by (b), 
t/1 e Co(<p>) r3 No(P ) = Co(P ) c Co(Pc). Thus ~/ belongs to Co(Pc), which 
proves (d). 

We proceed with the main: 

Proposition 2.1. Let G be a finite group with a cyclic Sylow p-subgroup P of 
order pa, and assume that [ G : G ' ] < ( p a - 1 ) / q ,  where q=[No(P):Co(P)].  
Let B be the principal p-block of G and let P be a defect of B. Then: 

(a) B contains q modular irreducible characters. 
(b) B contains q + (pa - 1)/q ordinary irreducible characters divided into 

two families: {Xx [2 ~ A} and {X, [i = 1,..., q}, where A is a set of representatives 
of the classes of non-trivial ordinary characters of P which are conjugate by 
elements of No(P). The {X~} are called "exceptional characters". 

(c) I f  tr~P ~ and z~ is a p'-element of Ca(tr), then: 

(2) Xx(ar 0 = s E 2"(a) for ). ~ A 
* e R  

where z runs over a set R of coset representatives of Co(P) in No(P), and e = +_ 1. 
Also: 

(3) Xj(a~z ) = ej for j = 1,..., q 

where sj = +_ 1, 
(d) The exceptional characters take the same values on p'-elements of G. 
(e) The degrees of the ordinary characters of B are given by: 

(4) x = Xx(1) = bp ~ + eq for 2 ~ A 

(5) xj = X j(1) = b3p ~ + ej for j = 1,..., q 

where b and bi are non-negative integers. 

Proof. By [3, Theorem 1, Part 1], (a) and (b) hold for some e, a divisor of q, 
instead of q. By [3, Theorem 1, Part 2], (d) holds. Since the exceptional characters 
are of the same degree and since [G: G'] < (p~ - 1)/e, the principal character 1 o 
is non-exceptional, say 1 o = X1. Let t r~P  ~ and let n be a p'-element of Ca(a). 
Then it follows from [3, Corollary 1.9 and Lemma 1.4] and Lemma 2.1. (c) that:  

1 = X~(an) = e~r~ ~ ¢;(z) 
e ~ R  
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where p' = ['P: ( o ) ] ,  71 = 4- 1 and ~b, is a modular irreducible character of  C~(o). 
As o(R)= q it follows immediately from the above equation with respect to 
n = 1 that 

q = e, e17 , = 1, ~bi(1) = 1 

for all i. Consequently, (a) and (b) hold, and 7, are of  the same sign. Hence it may be 
assumed that 7, = 1 for all i. The above equation, together with the fact that 
I~l'(n)[ = 1, also yields ~b~)- -  1 for all i and for all f -e lements  ~ of  C~(o). 
These remarks, together with Corollary 1.9 of  [3] and Lemma 2.1.(c) yield: 

X ~ ( ~ n )  = s ]~ ,~'(~) for ,~ ~ A 

Xj(cTn) = Sj for j = 1,..., e 

where e, sl = + 1 and R is a set of  coset representatives of CG(P) in N~(P), which 
is also a set of  coset representatives of  CG((a)) in No((o)) .  

It remains only to prove (e). By (3) 

( b j - I ' s j ) p  a -- ~ X j ( o ) +  x j = ( p a - 1 ) s / - I - x j  
eGp # 

for all j and some non-negative integers bj and (5) follows. Also by (2) 

bp* = ~, X ~ ( o ) + x = s ( - q ) + x  
a l p  # 

for some non-negative integer b implying formula (4). The proof  of  the Proposition 
is complete. 

As an immediate corollary from Proposition 2.1 we get the following 

COROLLARY 2.1. Under the assumptions of Proposition 2.1 and denoting x 
by x o, - s by % and ( f  - 1)]q by t we have: 

$ 
x~ --- et (mod pa) for i ffi 1, ..., q 

txo - So (rood pa) 

q 
(6) ~ s,x, = 0. 

J = O  

Proof. The congruences follow immediately from part (e) of  Proposition 2.1. 
To prove (6), let ~ x  denote summation over all characters of  the block B, and let 
o ~ P* .  It is well-known that 

E X ( ~ ) x o )  = O. 
X 

On the other hand, Proposition 2.1 implies that: 
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q 

E x( )xo) = Xo Z + Z 8,x, 
X A i = 1  

where ~A denotes summat ion  over  all 2 e A. Since by (2) 

q 

it follows f rom the above  equat ions  that  ~ ~ixi -- 0. 
f = O  

3. P roo f  of  Theorem 2 and the Corollary.  We begin with the p r o o f  of  

Theorem 2. I f  a = 1, then (I) holds by Theorem 1 in [2]. I t  is easy to check that  

the groups  ment ioned  in (I) and  (II)  satisfy the assumpt ions  of  the theorem.  
Therefore  f rom now on it will be assumed that  a > 2. The  theorem will be proved 

once we show that  a = 2 and G ~- PSL(2, 8). 
We will need the fol lowing well-known number  theoretical  result:  

LEMMA 3.1.(a) Let p be a prime and suppose that 

p ° -  1 = 2  ~. 

Then either a -- I or a = 2 ,  p = 3 a n d  b = 3. 

(b) The equation 

3 x - 2Y = e, ~ =  _+ 1 

has only the following solution in natural integers: (1) e =  1, x - - 1 ,  y = 1; 
(2) e = l , x = 2 ,  y = 3 ; ( 3 )  8 = - 1 ,  x = 1 y = 2 .  

Proof .  (a) First  assume that  a is odd. Since p - 1 = 2 c for  some c, we have 

2 b = p ~ -  1 = (2 c + 1) ° -  1 = 2~(2k + a) 

for  some non-negat ive  integer k. Therefore  2k + a = 1, a = 1. 

Assume now tha t  a = 2d, d a posi t ive integer. Then 

2 b = p2d _ 1 = (pd _ 1)(pd + 1) 

and  2 divides (pd + 1)/(pd _ 1). Consequent ly  

p,, + 1 > 2(p" - 1) 

which implies pd = 3, p = 3, a = 2d = 2 and  b = 3. 

(b) I f x  = 1, then clearly either y = 1, e = 1 or  y = 2, 8 = - 1. I f x  _> 2 and  8 = 1, 

then  by  par t  (a) x = 2 and  y = 3. Thus  it r emains  to  show tha t  the equat ion 

3 x =  2 y -  1 

has no  solut ion in na tura l  integer for  x > 1. Indeed,  suppose that  y is even. Then 

3:' -- (2 m - 1)(2 yI2 + 1) 
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which implies: 2 y/2 - 1 = 1, y = 2 and x = 1, in contradiction to the assumption 
x > 1. If  y is odd, then: 

3 x =  2 y -  1 -- ( 3 -  1) y -  1 -  - 2 (rood 3) 

a contradiction. The proof  of Lemma 3.1 is complete. 
We will proceed now with the proof  of Theorem 2. Let B be the principal 

p-block of G. The characters of  B are described in Proposition 2.1 and Corollary 2.1, 
and we will adopt the notation introduced there. It follows from (6) that at least 
one x i ~ 1 is not divisible by r; denote that xi by y. As q = [N~(P): C~(P)] divides 
p - 1, it follows from (4) and (5) that y is not divisible by p either. Thus y divides 

s and 
y < p " -  1. 

Equations (4) and (5) then again imply tha t  y = x is a degree of  an exceptional 

character of B and that 

either x = q  or x = p a - q .  

Each case will be considered separately. 

Case I. Assume that x = q. Since G has at least two conjugate classes of 
elements of order p, it follows that q < p - 1. But then the result of  ['4] applies, 
forcing the existence of a normal subgroup of G of order at least p"- 1, in contra- 

diction to the simplicity of G. 

Case II. Assume that x = p ° - q .  Since x divides s, a > 1 and q < p - 1 ,  

it follows that 

(7) s = p° - q. 

This implies that (q, s) = 1 and q = r c for some non-negative integer c. As G is 

simple, NG(P ) ~ C~(P) and hence q ~ 1, c > 0. As x = xo = p" - q and 8 0 = 1, 
it follows that 

(8)  1 + eoXo = 2 + (p  ° -  1) - r c = 2 + rC(t - 1) 

where t =  ( p ° -  1)/q > 1. Suppose that r # 2. Then (6) and (8) imply that 

at least one x~# 1,x is not divisible by r, hence divides s = p ° - q ,  in 
contradiction to (5). Therefore r = 2 and q = 2 c. Now suppose that c ~_ 2. 
Then again by (6) and (8) there exists x~ # 1, x, say xj, which is not divisible by 4. 

It follows from (5) that xj divides 2s < 2(p" - 1) and consequently xj = p" + ~j. 
But then (p" + 8~)/2 divides s, in contradiction to (7). Thus we have shown that 

r = q = 2 .  

Let x2 = up" + ~2 be the degree of the unique non-principal non-exceptional 

character of  B. Then it follows from (6) that 
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1 + eoXo + 82x 2 .~- pa _ 1 -l- ( u p  a -k 82)82 = 0 

Thus u s 2 = - 1 ,  hence u = l ,  s 2 = - 1  and x 2 = p a  1. Consequently p " - I  
divides o(G), and since ( p " -  1, p") = (p" - 1, p~ - 2) = 1, it follows that 

p" - 1 = 2 a, a > 2 

where d is a non-negative integer. Lemma 3.1 then yields: 

p = 3 ,  a = 2  and d = 3  

and 

o(G) -- 9 . 2  b. 7. 

Let Q be a Sylow 7-subgroup of  G and let e = ]N~(Q):C~(Q)]. Denote the 
principal 7-block by B1. Then by (6) B1 contains a non-principal ordinary character 
of  odd order z. Consequently z divides 9 and therefore z is a degree of  an ex- 
ceptional character of B1. By Lemma 2 of [2] z ~ 3 and consequently z = 9 = 7 + 2, 
e = 2 and the s which multiplies z in (6) is - 1. Since e = 2, B~ contains only one 
non-principal non-exceptional character W of degree w = 7u + p, where p = 4- 1 
and u is a positive integer. Now it follows from (6) that: 

1 + 9 ( -  1) + (7u + p)p = 0 

yielding up = 1, u = p = 1 and w = 8. By Lemma 1 of [2], the existence in BI of 
the character W of degree 8 < 14 implies that G contains no elements of  order 14. 
Lemma 3 of  [2] then yields: 

(9) ~, Z(1)Z('r) -- 0 (mod 2 b) 

where z ~ Q~ and the summation ranges over characters Z which belong simul- 
taneously to B~ and B2, where B 2 is the 2-block of  G containing W. By Lemma 2 
of [2]  B 2 is a block of  defect b -  1 at most and consequently it contains characters 
of  even orders only. Thus it follows from (9) and from the fact that W is the only 
character of  B~ of  even order that 

8 • 1 - 0  (rood 2b). 

As 8 divides o(G), this congruence yields: 

2 b = 8, o(G) = 7 • 8 • 9 = 504. 

Let R be a Sylow 2-subgroup of  G. It is well-known that R cannot be be quater- 
nion. If  R is dihedral, then Suzuki [7] ghas shown that G ~- PSL(2, u) for some 
prime u, which is not the case. Finally, if R is Abelian, then it follows from Gagen's 
result [5] that G contains a subgroup which is isomorphic either to PSL(2, 2n), 

n > 1 or to PSL(2, u) for some prime u - _ 3 (rood 8), u > 3. Since o(G) = 504, 
it follows that 
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G ~ PSL(2 ,  8) 

and the proof  of  Theorem 2 is complete. 
We will proceed with the proof  of the Corollary. It is easy to check that the 

groups mentioned in the conclusion of  Theorem 2 all satisfy assumptions (a)-(e). 
Thus it suffices to show that in each of the cases (a)--(e), G is either of  Type (I) 
or of  Type (II) mentioned in Theorem 2. 

In the proof  of Theorem 2, the assumption about the existence of at least two 
conjugate classes of elements of  order p was applied only for the elimination of 
the possibility that: 

(10) a > 2, x = q = p - 1 and q divides s. 

In cases (a) for p # 3, (b), and (e) this cannot happen. In case (d) the simplicity 
of G implies that s is an odd integer, again eliminating (1(3). Finally suppose that 
x = Xo = q = p - 1 and r does not divide p - 2. Then 80 = - 1 and 

( 1 1 )  1 + %Xo = 1 - ( p  - 1)  =, - ( p  - 2 )  

and it follows from (6) that at least one xi # 1, x, say x j, is prime to r. But then xj 
divides s < p a _  1, in contradiction to (5). Thus also in cases (e) and (a) with 

p = 3, (10) cannot happen and the proof  of the corollary is complete. 

4. Proof  of Theorems 1 and 3. First we will prove Theorem 3. It follows 

immediately from the formula 

o(PSL(2,  p"))  = rp(P" - 1)P'(P m + 1) 

where Tp = 1 if p = 2 and ?p = ½ if p # 2, that 6 divides o(PSL(2,  p"))  for all 
p ' .  Thus, in view of  our assumptions 

o(G) = p* " 2 ~ " 3 ~, b ~_ 2. 

Case (A). Assume that q = 2 =, m >= 2. Then m = b and 

o(G) = (2 m - 1)2"(2" + 1) = p*.  2=.  3". 

As (2 m - 1, 2 M + 1) = 1, it follows that 

3 c = 2 m + e ,  8 = + 1 ,  m ~ 2 .  

In view of  Lemma 3.1.(b), only the cases m = 2 and m = 3 could occur. Since 
PSL(2,4) and PSL(2, 8) satisfy the assumptions of  Theorem 3, the proof  of  

Case (A) is complete. 

Case (B). Assume that q = r m > 3 and r is an-odd prime. Then 

o(63 = (r" - D r ' ( ~  + D/2 = p°" 2 ~" 3 ~. 
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Suppose that neither r = 1 nor r m + 1 is a power of 2. Then each such expression 
is divisible by an odd prime, and since (r m -  1, r=+ 1 ) =  2, these primes are 
distinct and obviously not equal to r. But then o(G) is divisible by at least four 
primes, in contradiction to our assumptions. Thus 

2X= rm+ e, e = + l ,  rm> 3. 

Consequently r m - e = 2 (rood 4) and x = b > 2. 

Suppose first that r = 3. Then by Lemma 3.1.(b) only the case m = 2, 

G---PSL(2, 9) could occur. This group satisfies the assumptions of  Theorem 3. 
Suppose next that r > 3. Then r = p, m = a and 

(p" - ~)/2 = 3 °. 

Since p" + ~ = 2 b, it follows that 

2 b-1 _ 3" = ~, b -  1 > 1. 

Lemma 3.1.(b) now implies that only one of the following cases could occur: 

c = l ,  b = 2 ,  e = - I  and G = P S L ( 2 , 5 )  

c = 1, b = 3, ~ = 1 and G = PSL(2, 7) 

c = 2 ,  b = 4 ,  ~ = - 1  and G = P S L ( 2 , 1 7 ) .  

Each of the above groups satisfies the assumptions of  Theorem 3. The proof  
is complete in all cases. 

We proceed with the proof  of  Theorem 1. Since G is a non-cyclic simple group, 
u # p # w and without loss of  generality we may assume that 

pa > u b > w c. 

Let p~ and P2 be distinct odd primes among p, u and w. Let p,":, i = 1,2 be the 
highest powers of  Pi dividing o(G). We may assume without loss of  generality that 

Since p~, i = 1, 2 are odd primes 

< 

p~l < p ~  - 1  

and it follows f rom the Corollary, part (c), that G has to be isomorphic to some 

PSL(2, q), q > 3. Consequently, by Theorem 3, G is isomorphic to one of  the 

following groups: PSL(2, 5), PSL(2, 7), PSL(2, 8) and PSL(2,17). The proof  of  
Theorem i is complete. 
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